
BRINGING CONTROL SYSTEM USER INTERFACES TO THE WEB*

Xihui Chen, Kay Kasemir, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract
With the evolution of web based technologies,

especially HTML5 [1], it becomes possible to create web-

based control system user interfaces (UI) that are cross-

browser and cross-device compatible. This article

describes two technologies that facilitate this goal. The

first one is the WebOPI [2], which can seamlessly display

CSS BOY [3] Operator Interfaces (OPI) in web browsers

without modification to the original OPI file. The

WebOPI leverages the powerful graphical editing

capabilities of BOY and provides the convenience of re-

using existing OPI files. On the other hand, it uses generic

JavaScript and a generic communication mechanism

between the web browser and web server. It is not

optimized for a control system, which results in

unnecessary network traffic and resource usage. Our

second technology is the WebSocket-based Process Data

Access (WebPDA) [4]. It is a protocol that provides

efficient control system data communication using

WebSocket [5], so that users can create web-based control

system UIs using standard web page technologies such as

HTML, CSS and JavaScript. WebPDA is control system

independent, potentially supporting any type of control

system.

INTRODUCTION

Nowadays, people can do many things in web

browsers, such as live meetings, trading, gaming,

watching movies, and more. The web browser is no

longer a simple browser. It became a convenient platform

for various applications. Web applications have many

advantages over desktop applications: 1) Easy to access.

All you need is a URL; 2) Easy to deploy and maintain;

3) Accessible from anywhere at any time. Web

applications with desktop application characteristics are

called Rich Internet Application (RIA) [6]. Several

technologies have been invented for RIA, such as Flash,

Java Applet and Silverlight, but all these technologies

require separate plugin or client software installed on the

user’s device and even worse, they are not available on

popular iOS devices such as the iPhone and iPad.

Fortunately, HTML5 emerged in recent years as a

standard that has been quickly adopted by all mainstream

web browser vendors. HTML5 based web applications

have maximum cross-browser and cross-device

compatibilities.

HTML5 includes a set of new APIs such as a canvas

element, WebSocket, Drag-and-Drop, WebGL, Web

Worker, Web Storage, Audio, Video, and more. Among

which, the canvas element and WebSocket are most

important for control system UI applications. The canvas

element allows for dynamic, scriptable rendering of 2D

shapes and bitmap images. This makes it easy to

dynamically draw control system UIs in a web browser.

WebSocket provide full-duplex communication channels

over a single TCP connection. Before WebSocket, HTTP

strictly followed the request-response model. For each

update, clients initiated a new connection. The server

could not initiate an update and “push” it to the client. A

number of workarounds have been used to circumvent

this problem, such as polling and long polling. These

required additional header data and increased latency due

to the request-response model. Compared to plain HTTP,

WebSocket is a naturally full-duplex, bi-directional,

single-socket connection. Once the WebSocket

connection is established, the server can send message to

the client at any time and vice versa. This greatly reduces

latency, saves bandwidth and CPU power. Besides, the

WebSocket API is very easy to use because common

functionality such as handshaking, framing, buffering and

encoding are already defined in the specification and

hence implemented by WebSocket API providers. These

merits of WebSocket make them a perfect candidate as the

communication protocol for real-time control system web

applications.

WEBOPI

To bring control system UIs to the Web, the ideal way

is to directly run existing desktop Operator Interfaces in

web browsers without extra effort. This is exactly what

WebOPI does. It seamlessly executes OPI files created by

CSS BOY in web browsers, without any modifications

(see Fig.1).

Figure 1: Comparison of same OPI running in CSS BOY

and web browser

CSS BOY is a modern graphical operator interface

editor and runtime [7]. It allows users to build control

system GUIs using drag and drop from over 50 widgets. It

is further programmable via Jython or JavaScript. It

provides extension points for extra data sources, custom

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-

00OR22725 for the U.S. Department of Energy

widgets, and scripting libraries.

By reusing the OPI files created from CSS BOY,

WebOPI can immediately inherit the powerful runtime

functionality of CSS BOY and leverage the intuitive

graphical editing capabilities of the BOY OPI Editor.

Furthermore, WebOPI and CSS BOY are 90% single

sourced using Eclipse Remote Application Platform

(RAP) technology [8]. This allows continuous

synchronized evolution of CSS BOY and the WebOPI,

which means newly added features of CSS BOY are

immediately available within WebOPI.

WEBOPI ARCHITECTURE

WebOPI is built on Eclipse RAP [8], which provides

the capability of bringing Eclipse RCP to the web by

reusing most of the existing RCP code. It achieves this by

replacing the Standard Widget Toolkit (SWT) layer of

RCP with the Remote Widget Toolkit (RWT) layer (see

Fig.2).

Figure 2: RAP architecture

RWT code resides on both the server and the client

side. Underneath, it uses HTTP as the communication

protocol. On the server side, its Java code provides the

same interfaces as SWT, so existing SWT application

code can also run on RWT. On the client side, it utilizes

the qooxdoo JavaScript library for native widgets, and

HTML5 canvas elements for custom drawing. The client

side code is responsible for the representation and event

detection, while the server side code is responsible for

processing the application logic. For example, when the

user clicks a button in their web browser, the client code

sends the click event to the server. Then the server side

will process the event and reply back to the client with a

result. If there are updates that the server should “push” to

the client, it uses the HTTP long polling mechanism as

mentioned before.

While RAP provides a convenient single-source

programming model, implementers need to be aware of

key differences between desktop and web applications.

For example, each desktop application has a single user,

while web applications allow multiple concurrent users.

This requires the server to manage one UI thread life

cycle per user. The server needs to verify if the user is

still online, and properly dispose related resources once

the user closes the web session. This is achieved by

regularly checking for the long polling signal from each

client. This and other small differences between SWT and

RWT are handled via suitable Eclipse fragment or

extension mechanisms, while the bulk of the BOY code is

shared between the RCP and the RAP implementation.

WEBOPI LIMITATIONS

On one hand, the RAP single sourcing programming

model provides tremendous benefits: The WebOPI can

reuse existing BOY OPI files. On the other hand, there are

limitations.

First of all, most of the OPI logic is executed on the

server. While this reduces the client CPU load – an

important consideration for small, mobile devices,

including cell phones - it limits the maximum number of

clients for each server. This issue is negligible for

specialized control system web applications, for example

related to a specific subsystem, where the number of

concurrent users is small, and the advantage of easily

creating a common BOY display for both local and web

use by far more important.

On the other hand, the WebOPI is less suited for control

system displays with a broad, site-wide audience, for

example an accelerator status overview inspected by most

everybody each morning.

Secondly, the RWT network traffic is not optimized for

control system data. For example, on each update of a

gauge widget, the server needs to send all drawing

information to the web browser, instead of only the value

that needs to be displayed in the gauge. We already

mentioned that the long polling mechanism requires

additional header data. HTTP compression can be enabled

to reduce the network traffic about tenfold, albeit at the

same time increasing the CPU load on both server and

client.

While the WebOPI is responsive enough on desktop

web browsers, the combination of these disadvantages

mean that only comparably simple displays are practical

on mobile devices. Higher performance control system

web UIs require a more efficient protocol, optimized for

control system data, which is the motivation for

developing WebPDA.

WEBPDA

WebPDA is a protocol for efficient control system data

communication based on WebSocket. As explained in the

introduction, WebSocket has many advantages over

HTTP for real-time web applications. However,

WebSocket is a general protocol for transferring text or

binary bytes. It is not easy to directly use it for control

system web applications. WebPDA is an application level

protocol and API that allows users to build control system

web applications without dealing with communication

details. The protocol defines and handles the

communication sequence, message encoding and

decoding, buffering, security, and client life cycle

management. It further provides an abstract data layer on

the server side so that users can extend it to arbitrary

control systems.

The Protocol

In WebPDA, data is transferred as values of Process

Variables (PV), using PV as defined in the EPICS [9]

toolkit. The value type of a PV can be an arbitrary data

structure.

The WebSocket communication between server and

client is straightforward (see Fig. 3). Firstly, the client

sends a regular HTTP request to the server. If the server

allows, the HTTP connection is upgraded to a WebSocket

connection. After the connection is established, the client

sends a login command with user name and password to

the server. On success, the server will mark the client as

logged in. Otherwise, it will forbid further commands

from this client. The client can send a “Create PV”

command to the server. The server will create the PV and

try to connect to that PV in the underlying control system,

i.e. EPICS. Once the PV is connected, it will notify the

client that the PV is connected, and from now on send

value changes to the client. The client can send a “Close

PV” command to server when the PV is no longer of

interest. If the client connection is unexpectedly lost, the

server will detect this and dispose related resources.

Figure 3: Typical communication sequence of WebPDA

Since both server and client maintain the status and

value of each PV, it is not necessary to transfer the whole

data structure for each value update. Instead, the protocol

only transfers the changed fields of the data structure. For

example, the PV metadata such as units, precision,

display limits, alarm limits is only transferred when it

changes. Most PV updates are thus limited to network

transfers of the latest value, timestamp and alarm status.

Client commands and messages from the server to the

client are generally transferred as JSON [10] text, because

JSON is very flexible and easily parsed in client-side

JavaScript. Value updates, however, are transferred in a

binary format, because a binary format is most compact

and can also preserve the precision of floating point

numbers. Overall, this design provides us with maximum

efficiency and also flexibility.

Server Side Implementation

The WebPDA protocol does not limit implementation

techniques for either server or client. In principle, any

languages that support WebSocket can all be used to

implement servers or clients.

Currently, we provide a server side implementation

based on JSR356 [11]. JSR356 is a standard WebSocket

Java API. It is currently supported by Glassfish 4 and

Tomcat 8. The WebPDA core implementation is actually

layered to remain independent from a specific WebSocket

API, fundamentally allowing an alternate server side

implementation, for example for Jetty.

The server side library is decoupled into an abstract

data interface layer and a specific implementation layer,

so the data interface is independent from its

implementations. This allows extending WebPDA to

arbitrary data sources. Currently, we provide

implementation for the PVManager [12], which already

has support for EPICS V3, V4, simulated PVs, local PVs

and formulas. PVManager also allows extension to

arbitrary control systems. User can create a new data

source either on top of the abstract WebPDA data

interface layer or on top of PVManager. The benefit of

creating new data source on top of PVManager is that it

already implemented a set of value types, queuing,

throttling, encoding and corresponding decoding code on

the client side.

Client Side Implementation

While the WebPDA client side can be implemented in

any WebSocket-aware language, we chose JavaScript as

it is currently predominant in web browsers.

Corresponding to the server design, the client side also

has two layers: an abstract layer that handles common

communications, and a specific implementation layer that

decodes the data corresponding to the server side

implementation layer. If new data sources added to the

server side are based on the PVManager, no additional

work is needed for the client side.

The client side API hides protocol details from users,

allowing users to focus on the PVs when writing web

applications (see Fig 4).

Figure 4: WebPDA client side JavaScript API

WebPDA Widgets

To simplify the process of building web browser

control system UIs, WebPDA also pre-wrapped some

widgets that allow users to display the value of a PV

inside a widget via a single line of code (See Fig 5). In a

general HTML “<div>” element, users only need to

specify the element class as “webpda-widgets”, select the

widget type, for example a gauge, and specify the desired

PV name. The widget will automatically connect to the

PV and display its value in real-time. Based on the widget

type, PV metadata such as display limits will determine

the widget’s range; the alarm status may affect the widget

colors, and so on. Users can also wrap their own widgets

as WebPDA widgets in a separate JavaScript library.

Figure 5: Pre-wrapped WebPDA widget demo

SECURITY

Internet web applications are potentially exposed to

anybody, anywhere in the world. Consequently, there

may be a need to control access to WebPDA data. For

authentication, both the WebOPI and the current

WebPDA implementation support the Java Authentication

and Authorization Service (JAAS), allowing integration

with existing site-wide authentication infrastructures such

as LDAP. For simpler, standalone installations, system

administrators can use a server-side text file to configure

users and their passwords.

The handling of authorization differs between the

WebOPI and WebPDA. For the WebOPI, the server

executes the application logic. PV read/write permissions

are controlled by the underlying control system, such as

EPICS Channel Access Security, regardless of the web-

based user. While WebPDA can similarly rely on the

security mechanism of the underlying control system, it

allows additional configuration for each web-based user,

either from a server-side file or LDAP.

To protect transferred data from man-in-the-middle

attacks, TLS [13] can be used to encrypt the

communication for both HTTP and WebSocket.

Encrypted HTTP URLs start with https:// and encrypted

WebSocket URLs start with wss://.

COMPATIBILITY

Given the plethora of mobile devices, operating

systems and web browsers available on the market, it is

important for control system web applications to be

compatible with the major of devices and browsers.

Fortunately, HTML5 as a popular standard has been

quickly adopted by all mainstream browser vendors. As

we write this article, both WebOPI and WebPDA are

compatible with the latest versions of mainstream web

browsers. Only the default Browser on Android devices

may exhibit incompatibilities, but they are resolved by

installing a separate Chrome, Firefox or Opera browser on

the device.

SUMMARY

This article introduced two technologies that facilitate

the goal of bringing control system UIs to the web. They

have different characteristics, tailored for different use

cases. The WebOPI makes it extremely easy to build rich

control system web UIs, but its efficiency limits the

number of simultaneous users. WebPDA provides

maximum efficiency, but requires certain HTML and

JavaScript programming skills to implement the UI. A

future tool that generates WebPDA UIs using drag and

drop as in the CSS BOY display editor would combine

the best of both approaches.

To the end user, either technology provides access to

control system data via a simple web URL on almost any

web-connected device.

REFERENCES

[1] http://en.wikipedia.org/wiki/HTML5

[2] http://sourceforge.net/apps/trac/cs-studio/wiki/webopi

[3] https://sourceforge.net/apps/trac/cs-studio/wiki/BOY

[4] http://webpda.org/

[5] http://en.wikipedia.org/wiki/WebSocket

[6] http://wikipedia.org/wiki/Rich_Internet_application

[7] X. Chen, K. Kasemir, “BOY, a modern graphical

operator interface editor and runtime”. Proceedings

of 2011 Particle Accelerator Conference, New York,

NY, USA

[8] http://eclipse.org/rap/

[9] http://www.aps.anl.gov/epics/

[10] http://www.json.org/

[11] http://jcp.org/en/jsr/detail?id=356

[12] http://pvmanager.sourceforge.net/

[13] http://wikipedia.org/wiki/Transport_Layer_Security

[14] https://github.com/dylan171/ControlSystemWeb

[15] Y. Furukawa. “Web-based Control Application

Using WebSocket”. Proceedings of ICALEPCS2011,

Grenoble, France

